National

Mathematics Paper 1
 (Non-Calculator)

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Specimen Question Paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.
Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.
(a) Marks for each candidate response must always be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
(b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
(c) Credit must be assigned in accordance with the specific assessment guidelines.
(d) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
(e) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
(f) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
(g) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
(h) Unless specifically mentioned in the specific assessment guidelines, do not penalise:

- Working subsequent to a correct answer
- Correct working in the wrong part of a question
- Legitimate variations in solutions
- Repeated error within a question

Definitions of Mathematics-specific command words used in this Specimen Question Paper.

Determine: find a numerical value or values from the information given.
Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $\sin (A \pm B)$ or $\cos (A \pm B)$.

Show that: use mathematics to prove something, eg that a statement or given value is correct all steps, including the required conclusion, must be shown.

Express: use given information to rewrite an expression in a specified form.
Hence: use the previous answer to proceed.
Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used.

Justify: show good reason(s) for the conclusion(s) reached.

	Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
1	Ans: $\frac{3}{4} x^{2}-\frac{1}{2} x^{-1}+C$ - preparation for integration - ${ }^{2}$ correct integration of first term - ${ }^{3}$ correct integration of second term - ${ }^{4}$ includes constant of integration	4	- $\frac{3}{2} x+\frac{1}{2} x^{-2}$ - $2 \frac{3}{2} \cdot \frac{x^{2}}{2}+\ldots$ $\bullet^{3} \ldots+\frac{1}{2} \cdot \frac{x^{-1}}{-1}$ - $4 \frac{3}{4} x^{2}-\frac{1}{2} x^{-1}+C$
2	Ans: $(-1,0),(0,4),(3,16)$ - ${ }^{1}$ sets equation of curve equal to equation of line - ${ }^{2}$ equates to zero - ${ }^{3}$ factorises fully - ${ }^{4}$ calculates x-coordinates - ${ }^{5}$ calculates y-coordinates	5	- $x^{3}-2 x^{2}+x+4=4 x+4$ - ${ }^{2} x^{3}-2 x^{2}-3 x=0$ -3 $\quad x(x+1)(x-3)=0$ - ${ }^{4} x=0, x=-1, x=3$ - ${ }^{5}(0,4),(-1,0),(3,16)$
3	Ans: $S(5,25,-2)$ - ${ }^{1}$ find coordinate of Q or component vector \mathbf{q} -2 sets up vector equation for \mathbf{r} \bullet^{3} find coordinate of R or component vector \mathbf{r} - ${ }^{4}$ sets up vector equation for \mathbf{s} - ${ }^{5}$ find coordinate of S	5	$\begin{aligned} & \bullet^{1} \quad \mathbf{q}=\mathbf{p}+\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c} 0 \\ 15 \\ 3 \end{array}\right) \text { or } \mathrm{Q}(0,15,3) \\ & \bullet^{2} \quad \mathbf{r}=\mathbf{q}+\overrightarrow{\mathrm{QR}}=\left(\begin{array}{c} 0 \\ 15 \\ 3 \end{array}\right)+\left(\begin{array}{c} 3 \\ 6 \\ -3 \end{array}\right) \\ & \bullet^{3} \quad \mathbf{r}=\left(\begin{array}{c} 3 \\ 21 \\ 0 \end{array}\right) \text { or } \mathrm{R}(3,21,0) \\ & \bullet^{4} \quad \mathbf{s}=\mathbf{r}+\overrightarrow{\mathrm{RS}}=\left(\begin{array}{c} 3 \\ 21 \\ 0 \end{array}\right)+\left(\begin{array}{c} 2 \\ 4 \\ -2 \end{array}\right) \\ & \bullet^{5} \quad \mathrm{~S}(5,25,-2) \end{aligned}$

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
4		Ans: $-4<p<12$ - ${ }^{1}$ know discriminant <0 - 2 simplify - ${ }^{3}$ factorise LHS -4 correct range	4	- ${ }^{1} b^{2}-4 a c<0$ and $a=2, b=p, c=p+6$ stated or implied by \bullet^{2} - ${ }^{2} p^{2}-8 p-48<0$ - ${ }^{3}(p-12)(p+4)<0$ - ${ }^{4}-4<p<12$
5	(a)	Ans: $m_{l_{2}}=-\sqrt{3}$ - ${ }^{1}$ rearranging equation to calculate gradient of line l_{1} -2 calculating gradient of l_{2}	2	$\begin{aligned} & \text { •1 } y=\frac{1}{\sqrt{3}} x \quad m=\frac{1}{\sqrt{3}} \\ & \bullet^{2} \quad m_{l_{2}}=-\sqrt{3} \end{aligned}$
	(b)	Ans: $\theta=\frac{2 \pi}{3}$ or 120° - ${ }^{3}$ using $m=\tan \theta$ -4 calculating angle	2	- ${ }^{3} \tan \theta=-\sqrt{3}$ - ${ }^{4} \theta=\frac{2 \pi}{3}$ or 120°
6	(a) (b)	Ans: $\frac{1+\sqrt{3}}{2 \sqrt{2}}$ or $\frac{\sqrt{2}+\sqrt{6}}{4}$ - ${ }^{1}$ correct expansion -2 any expression equivalent to $\sin 105^{\circ}$ -3 correct exact value equivalents - ${ }^{4}$ correct answer	4	- ${ }^{1} \sin x^{\circ} \cos 60^{\circ}+\cos x^{\circ} \sin 60^{\circ}$ - ${ }^{2} \sin (45+60)^{\circ}$ or equivalent - ${ }^{3} \frac{1}{\sqrt{2}} \times \frac{1}{2}+\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}$ - $4 \frac{1+\sqrt{3}}{2 \sqrt{2}}$ or $\frac{\sqrt{2}+\sqrt{6}}{4}$
7	(a)	- ${ }^{1}$ know to use $x=-1$ -2 complete synthetic division - recognition of zero remainder	3	
	(b)	Ans: $(x+1)(x+3)(x-4)$ - ${ }^{4}$ identify quotient - 5 factorised fully	2	- ${ }^{4} \quad x^{2}-x-12$ ${ }^{5}(x+1)(x+3)(x-4)$
Notes		Alternative methods of showing $(x+1)$ is a factor, such as long division, inspection and evaluating are perfectly acceptable.		

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
8	(a)	Ans: $h(x)=2 x^{2}-8 x+5$ -1 correct substitution - ${ }^{2}$ squaring - ${ }^{3}$ expanding and simplifying	3	- $1 \quad h(x)=8\left(1-\frac{1}{2} x\right)^{2}-3$ - ${ }^{2} \quad 1-x+\frac{1}{4} x^{2}$ - ${ }^{3} h(x)=2 x^{2}-8 x+5$
	(b)	Ans: $2(x-2)^{2}-3$ - ${ }^{4}$ identify common factor - 5 complete the square - ${ }^{6}$ process for q	3	-4 $2\left(x^{2}-4 x \ldots\right.$ stated or implied by \bullet^{3} - ${ }^{5} 2(x-2)^{2} \ldots$ -6 $2(x-2)^{2}-3$
Notes		Values for p and q must be consistent with the value for a.		
	(c)	Ans: $(2,-3)$ - ${ }^{7}$ state turning point	1	$\bullet^{7} \quad(2,-3)$
	(d)	Ans: - ${ }^{8}$ correct shape - 9 annotation, including y-axis intercept	2	- ${ }^{8}$ parabola with minimum turning point labelled (positioned consistently with answer to (b)) - ${ }^{9}(0,8)$

Question		Marking scheme. Give one mark for each -	Max mark	Illustration of evidence for awarding a mark at each •
9	(a)	Ans: $y-10=-3(x+1)$ - ${ }^{1}$ finding equation of line	1	-1 $y-10=-3(x+1)$ or equivalent
	(b)	Ans: $\quad B(3,-2)$ -2 use of simultaneous equations - ${ }^{3}$ solving to find one coordinate of midpoint - ${ }^{4}$ finding remaining coordinate of midpoint - ${ }^{5}$ using midpoint formula or 'stepping out' - ${ }^{6}$ finding coordinates of B	5	-2 $y=-3 x+7$ and $3 y=x+11$ - ${ }^{3}$ either $x=1$ or $y=4$ - ${ }^{4} \mathrm{M}(1,4)$ $\cdot{ }^{5}$ either $x=3$ or $y=-2$ - $\quad \mathrm{B}(3,-2)$
10		Ans: $\frac{3 \sqrt{3}}{2}$ - ${ }^{1}$ start to differentiate -2 complete differentiation - ${ }^{3}$ evaluate $f^{\prime}\left(\frac{5 \pi}{6}\right)$	3	- $13 \times 4 \sin ^{2} x$ - ${ }^{2} \times \cos x$ - ${ }^{3} 12\left(\frac{1}{2}\right)^{2} \times \frac{-\sqrt{3}}{2}=12 \times \frac{1}{4} \times \frac{-\sqrt{3}}{2}=\frac{-3 \sqrt{3}}{2}$
11	(a)	- ${ }^{1}$ knows derived function represents gradient and that the minimum value of $f^{\prime}(x)$ is zero	1	-1 $m=f^{\prime}(x) \geq 0$ stated explicitly
	(b)	-2 interprets information correctly \bullet^{3} completes sketch	2	- ${ }^{2}$ stationary point plotted in fourth quadrant ${ }^{3}$ point of inflexion on an increasing graph

Question		Marking scheme. Give one mark for each •	Max mark	Illustration of evidence for awarding a mark at each •
12	(a)	Ans: $\frac{1}{50}$ sec or 0.02 sec - ${ }^{1}$ knows how to find period - ${ }^{2}$ correct answer	2	- ${ }^{1} T=\frac{2 \pi}{100 \pi}$ -2 $\frac{1}{50}$ or 0.02
	(b)	Ans: $\frac{7}{600}, \frac{11}{600}$, and $\frac{19}{600} \mathrm{sec}$ - ${ }^{1}$ equating function with -60 -2 rearranging - ${ }^{3}$ solve equation for $100 \pi t$ - ${ }^{4}$ process solutions for t - 5 knowing to use period or demonstrating another solution from the third quadrant - ${ }^{6}$ third value for t	6	- ${ }^{1} 120 \sin 100 \pi t=-60$ - $2 \sin 100 \pi t=-\frac{1}{2}$ $\bullet 3$ $\bullet 4$ -3 $\bullet 0 \pi t=\frac{7 \pi}{6}$ and \bullet^{3} $\frac{11 \pi}{6}$ \bullet $t=\frac{7}{600}$ and $\frac{11}{600}$ - ${ }^{5} T=\frac{1}{50}$ or $100 \pi t=3 \pi+\frac{\pi}{6}$ -6 $\frac{19}{600}$

